Asymptotic Correlations for Gaussian and Wishart Matrices with External Source

نویسندگان

  • PATRICK DESROSIERS
  • PETER J. FORRESTER
چکیده

We consider ensembles of Gaussian (Hermite) and Wishart (Laguerre) N ×N hermitian matrices. We study the effect of finite rank perturbations of these ensembles by a source term. The rank r of the perturbation corresponds to the number of non-null eigenvalues of the source matrix. In the perturbed ensembles, the correlation functions can be written in terms of kernels. We show that for all N , the difference between the perturbed and the unperturbed kernels is a degenerate kernel of size r which depends on multiple Hermite or Laguerre functions. We also compute asymptotic formulas for the multiple Laguerre functions kernels in terms multiple Bessel (resp. Airy) functions. This leads to the large N limiting kernels at the hard (resp. soft) edge of the spectrum of the perturbed Laguerre ensemble. Similar results are obtained in the Hermite case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

Pathwise asymptotic behavior of random determinants in the Jacobi ensemble

This is a companion paper of [Rou05]. It concentrates on asymptotic properties of determinants of some random matrices in the Jacobi ensemble. Let M ∈ Mn1+n2,r(R) (with r ≤ n1 + n2) be a random matrix whose entries are standard i.i.d. Gaussian. We can decompose MT = (MT 1 ,M T 2 ) with M1 ∈ Mn1,r and M2 ∈ Mn2,r. Then, W1 := MT 1 M1 and W2 := MT 2 M2 are independent r× r Wishart matrices with pa...

متن کامل

On moments of complex Wishart and complex inverse Wishart distributed matrices

This paper addresses the calculation of moments of complex Wishart and complex inverse Wishart distributed random matrices. Complex Wishart and complex inverse Wishart distributed random matrices are used in applications like radar, sonar, or seismics in order to model the statistical properties of complex sample covariance matrices and complex inverse sample covariance matrices, respectively. ...

متن کامل

Sujet : Moments Method for Random Matrices with Applications to Wireless Communication

In this thesis, we focus on the analysis of the moments method, showing its importance in the application of random matrices to wireless communication. This study is conducted in the free probability framework. The concept of free convolution/deconvolution can be used to predict the spectrum of sums or products of random matrices which are asymptotically free. In this framework, we show that th...

متن کامل

Second Order Freeness and Fluctuations of Random Matrices: I. Gaussian and Wishart Matrices and Cyclic Fock Spaces

We extend the relation between random matrices and free probability theory from the level of expectations to the level of fluctuations. We introduce the concept of “second order freeness” and interpret the global fluctuations of Gaussian and Wishart random matrices by a general limit theorem for second order freeness. By introducing cyclic Fock space, we also give an operator algebraic model fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006